Inference for the Mean Difference in the Two-Sample Random Censorship Model
نویسندگان
چکیده
Inference for the mean difference in the two-sample random censorship model is an important problem in comparative survival and reliability test studies. This paper develops an adjusted empirical likelihood inference and a martingale-based bootstrap inference for the mean difference. A nonparametric version of Wilks' theorem for the adjusted empirical likelihood is derived, and the corresponding empirical likelihood confidence interval of the mean difference is constructed. Also, it is shown that the martingale-based bootstrap gives a correct first order asymptotic approximation of the corresponding estimator of the mean difference, which ensures that the martingale-based bootstrap confidence interval has asymptotically correct coverage probability. A simulation study is conducted to compare the adjusted empirical likelihood, the martingale-based bootstrap, and Efron's bootstrap in terms of coverage accuracies and average lengths of the confidence intervals. The simulation indicates that the proposed adjusted empirical likelihood and the martingale-based bootstrap confidence procedures are comparable, and both seem to outperform Efron's bootstrap procedure. 2001
منابع مشابه
Linear Wavelet-Based Estimation for Derivative of a Density under Random Censorship
In this paper we consider estimation of the derivative of a density based on wavelets methods using randomly right censored data. We extend the results regarding the asymptotic convergence rates due to Prakasa Rao (1996) and Chaubey et al. (2008) under random censorship model. Our treatment is facilitated by results of Stute (1995) and Li (2003) that enable us in demonstrating that the same con...
متن کاملAccurate Inference for the Mean of the Poisson-Exponential Distribution
Although the random sum distribution has been well-studied in probability theory, inference for the mean of such distribution is very limited in the literature. In this paper, two approaches are proposed to obtain inference for the mean of the Poisson-Exponential distribution. Both proposed approaches require the log-likelihood function of the Poisson-Exponential distribution, but the exact for...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملAn Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کاملComparing the Shape Parameters of Two Weibull Distributions Using Records: A Generalized Inference
The Weibull distribution is a very applicable model for the lifetime data. For inference about two Weibull distributions using records, the shape parameters of the distributions are usually considered equal. However, there is not an appropriate method for comparing the shape parameters in the literature. Therefore, comparing the shape parameters of two Weibull distributions is very important. I...
متن کامل